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I.  PRD Risk Title: Risk of Intervertebral Disc Damage 

 

Description: Extended exposures to microgravity (and possibly fractional gravity) may lead 

to an increased risk of spinal nerve compression and back pain. 

 

II. Executive Summary  

 

 There is an increased incidence of back pain expressed by crewmembers in space.   

Additionally, herniated Intervertebral Discs (IVD) have been diagnosed in returning Skylab 

and Shuttle astronauts on landing day, and after varying periods of time in the postflight 

period.  Such injuries in astronauts, however, may be related to their careers as aviators 

(either high performance jet pilots and/or helicopter pilots). However, the evidence of IVD 

injuries raises the concern that astronauts are at increased risk during loading scenarios 

experienced during exploration missions (for example, re-entry to a gravitational field, 

activities on planetary surfaces).    

 To date, flight data related to potential back injuries have focused upon spine elongation 

and the well-established effects of mechanical unloading on intervertebral discs (IVDs).  

IVDs are the articulating connective tissue between vertebral bodies of the spinal column 

where the IVD acts as a shock absorber to the mechanical loads experienced in the axial 

direction. The connective tissue of joints is devoid of vasculature so the exchange of 

nutrients and waste products is accomplished by the influx and efflux of fluid. In general, the 

diurnal fluctuations in IVD volume of the spine are induced as the individual transitions 

between sleep (supine) and ambulation (upright), although the spine is subjected to a variety 

of mechanical forces with daily activities in 1 G.   However, during prolonged bed rest or 

spaces flight, the absence of axial and muscular loading to the spine causes the IVDs to swell 

with increased fluid intake.  Consequently, the changes in IVD volume are a major factor for 

the elongation of the spine, the increase in height, and the loss of lordotic curvature. It may 

also account for the occurrence of back pain, although the exact cause for the latter is not 

well defined.  Tissue analyses of animals, mechanically unloaded in space and ground-based 

models, reveal changes in IVD biochemical composition. Spaceflight-induced changes to 

IVDs may predispose the IVD to injury during reloading.  Currently there is no effective way 

to introduce axial loads to the human spine, during real or simulated weightlessness, as a 

means of restoring the diurnal changes in IVD volume.  Restoration of IVD volume, after 

spaceflight and bed rest, has been observed with return to upright position in a 1-G 

environment, but the recovery time course has not been systematically assessed.  Likewise, 

IVD biochemical and biomechanical properties, before and after spaceflight, have not been 

investigated.   

 In brief, extended exposures to microgravity are associated with increased reports of back 

pain during flight and may be related to the occurrence of disc herniations in astronauts after 

flight.  The etiology for these observations may be multi-factorial given the number of 

documented physiological risk factors induced in space, which include muscle atrophy, tissue 

degeneration, bone fracture and accelerated bone loss.  Thus, evidence to define the risk need 

further investigation. 
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Background 

 In a questionnaire survey of astronauts who had flown in space, sixty-eight percent of the 

population reported generalized back pain, with some astronauts rating the pain between 

severe to moderate (Wing, 1991). This discomfort is considered most painful early during the 

spaceflight but is attenuated as flight duration progresses. At face value, the cause of back 

pain in space may be associated to the elongation of the vertebral column by IVD expansion 

or to other causes. Lower back pain in humans, for example, is also associated with trunk 

muscle weakness (Dvir, 2003; Ho, 2005) suggesting that the reduced biomechanical forces 

from space-induced atrophy of lower back muscles may be a contributing factor. 

Alternatively, pain caused by IVD changes may be related to increased strain of proximal 

facet joint capsules (Moneta, 1994), fractured innervated vertebral end-plates (Boos, 1995; 

Hicks, 2002), disc degeneration (Straus, 2002), or herniation of annulus fibrosis (Collacott, 

2000).    

 Irrespective of the exact cause of back pain, there may be an increased risk for IVD 

injury or damage when the swollen IVDs of crewmembers (under the weightlessness of 

transit) are subjected to excessive forces or torques while performing work on planetary 

surfaces. Exploration missions on planetary surfaces may introduce habitability issues that 

could induce excessive torsional stress, an established risk factor for herniation of annulus 

fibrosus (Farfan, 1970). For instance, excessive axial rotation could occur while carrying 

large masses in the partial G environment by a crewmember with de-conditioned back 

muscles and may consequently subject IVDs to lateral shear forces. Regardless, there are 

minimal data (medical evaluations or research) that characterizes the biomechanical and 

biochemical changes in IVDs in crewmembers during or after flight to assess how such 

changes predisposes the IVDs to injury under re-loading. 

 However, herniated nucleus pulposus is known to occur in aviators exposed to high G 

environments (Mason, 1996) and has occurred in astronauts after a mission.  There were 

three separate occurrences of IVD injury on the day of landing as determined by chart 

reviews and personal communication with crewmembers and flight surgeons (medical chart 

reviews, personal communication).   The relative risk rate of IVD injury in the astronaut 

population has only recently been evaluated (Johnston, manuscript in revision 2009).  There 

is no evidence, however, connecting the origin of an IVD injury with changes in IVDs as a 

result of spaceflight – that is, morphological and biochemical changes in IVD composition. 

 Nevertheless, the results of this retrospective characterization of IVD injury in the 

astronaut population raises the concern that the spaceflight-induced changes to IVDs require 

further analyses. Additional evidence would describe the spaceflight-induced changes and 

elucidate how these morphological and biochemical changes predispose the nucleus pulposus 

to herniation during compressive loading. Based upon the IVD tissue analyses of unweighted 

animals, biochemical changes to the nucleus pulposus during spaceflight will affect the 

ability of the osmotic pressure and elasticity of the nucleus pulposus to resist compressive 

loading (Pedrini-Mille, 1992; Morey-Holton; 2002; Hutton, 2002). Biochemical changes in 

the IVDs of crewmembers after flight have not been identified. However, there is in vitro 

research with bovine cartilage explants to use magnetic resonance technology to correlate 

changes in IVD proteoglycan content with the T1rho relaxation rates of protons (Wheaton, 

2005). This biomarker will enable non-invasive monitoring of proteoglycan content as a 

method of assessing the biochemical impact of weightlessness. 
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Evidence-to-Date 

 

Spaceflight Evidence 

 

 An early quantification of spine elongation during weightlessness was performed in a 

single astronaut during the 84-day Skylab 4 mission (Thornton, 1987). Changes in height 

were monitored during weightlessness (to the 1/16 in.) which described an asymptotic 

increase in height during flight that appeared to plateau 29 days into the flight. The absolute 

height change was 1.5 inches at the end of the mission. The increase in spine elongation is 

presumed associated with the expansion of IVDs during axial unloading.  There was also a 

reported case of spine pain on landing day which was associated with herniated IVD 

(personal medical communication). 

 

Astronaut Chart Review 

 

 The reports of several astronauts developing cervical or lumbar herniated nucleus 

pulposus (HNP) in the immediate period following landing on earth prompted a retrospective 

review by NASA flight surgeons to evaluate the incidence of IVD damage in the astronaut 

population (S. Johnston, manuscript in revision, 2009). The review sought to clarify whether 

spaceflight increased the risk for IVD damage because of (a) the exposure to both low- and 

high G environments during a mission; (b) the extended periods in an abnormal posture; 

and/or (c) the changes to IVD structure due to its expansion in the absence of axial loading in 

space.  Specifically, this retrospective study compared the incidence of herniated nucleus 

pulposus (IVD damage) in astronauts to an age-matched control population of persons who 

have not flown in space.   Although the postflight incidence of IVD damage in astronauts is 

apparent, it is unclear whether the spaceflight-induced changes predispose the IVDs to injury. 

In particular, evidence indicates that many of the injured astronauts had previous, multiple 

exposures to excessive G forces (between 6-20 G) as high performance jet pilots or to 

vibrating forces as helicopter pilots.  

 Notably, the pathophysiology of IVD injury after spaceflight has not been clearly 

identified.  The documented expansion of disc volume after spaceflight, together with the 

IVD injuries after reloading in Earth’s gravity, suggests that the adaptive changes of the IVD 

in weightlessness disrupts the balance between osmotic pressure of the nucleus pulposus and 

the resistive collagen structure of the annuli fibrosus, thereby reducing the ability of the IVD 

structure to withstand re-exposure to G forces. Repeated, previous exposures to excessive G 

forces in high performance jets, however, may have also weakened IVD structures, 

particularly in the cervical vertebrae, increasing the susceptibility of these IVDs to damage.  

Thus, the relative risk of spaceflight-induced IVD injury needs to be delineated by comparing 

the absolute risks of the astronaut population with that of a terrestrial control cohort with 

similar pilot flight history. 

 

 Ground-based Evidence 

 

 IVD volume changes were quantified by magnetic resonance imaging in response to 

varying scenarios of axial unloading (LeBlanc, 1994). The cross-sectional areas and the 

transverse proton relaxation constants (T2) of IVDs were indices used to monitor adaptive 
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changes of the IVDs to overnight bed rest (over 5 weeks and 17 weeks) and after 8 days of 

spaceflight. The averaged expansion of IVDs with bed rest appeared to reach an equilibrium 

anywhere between 9 hours and 4 days of unloading with the expansion ranging between 10-

40% of baseline, pre-bed rest values (mean=22%). There were mild increases in T2 

relaxation times relative to increases in disc area. Restoration of IVD volumes after 

unloading was not evaluated systematically but the Table (below) provides a relative 

comparison of the elapsed time in 1 G at which time the measured IVD volumes were no 

different from baseline measurements; the relative periods of recovery appear to lengthen as 

the period of IVD adaptation to unloading increases. 

Table.  Relative comparison of the elapsed time in 1 G 

Period of Unloading Relative Time before Recovery 

8 days spaceflight < 24 hours 

5 weeks bed rest days 

17 weeks bed rest > 6 weeks 

 

 

Computer-Based Simulation Information  

 

The literature reports the application of Finite Element Modeling (FEM) to IVDs under the 

lower osmotic pressure of the space environment. Under this scenario, FEM shows that the 

appearance of a crack in the IVD experiencing lower osmotic pressure will increase the IVD 

risk for injury (Wognum, 2006). Likewise, FEM was used to demonstrate that static loading 

alone will not promote fluid extrusion from IVDs swollen during bed rest or weightlessness. 

Fluid expulsion will increase with the increased frequency of loading (Cheung, 2003). Future 

work in this simulation capability needs to be pursued. 

 

Risk in Context of Exploration Mission Operational Scenarios 

 

 Although evidence to define the etiology of back and IVD injury remains an open issue, 

the following assumptions and presumptions were consider when the risk was first evaluated 

in the context of exploration missions.   

1.  The absence of axial loading and of forces due to atrophy of back muscles may 

predispose crewmembers to IVD injury; 

2. The risk of detrimental changes to back and to IVD structure and biochemistry will 

increase with increasing unloaded periods in weightlessness;  

3. The risk for back injury and for IVD damage will be greater with the larger G forces 

experienced during re-entry, landing and surface activities. 

 

 

Conclusion 

 

 In sum, reports in the literature suggest that adaptation to the space environment can 

directly or indirectly induce back pain and may increase the risk for injury when 

crewmembers are re-subjected to gravity enhanced mechanical forces and torques. Back pain 

is commonly reported by crewmembers during spaceflight and a chart review of 321 
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astronauts suggested there may be an increased risk for IVD injury in astronauts but this 

finding needs to explored further before an increased risk for injury during exploration 

missions can be defined.  Mechanical unloading with spaceflight is associated with 

distortions in IVD morphology, alterations in biochemistry (proteoglycan and collagen 

content) and in reduced biomechanical forces of muscles. More evidence (clinical and bench 

research data) needs to be acquired in order to establish whether the lengthening of the spinal 

column with space adaptation syndrome, the atrophy of back muscles, the accelerated loss of 

bone mass and the degeneration of both skeletal and IVD tissue, due to space exposure, 

exacerbate the risk for back injury during and after spaceflight. Knowledge regarding the 

various loading activities during exploration missions and during return to earth needs to be 

well defined; identification of loads and torques shall be used in computer modeling to assess 

the probability of back and/or IVD injury. 
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